

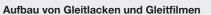
OKS Trockenschmierstoffe Gleitlacke und Gleitfilme

DIE INDUSTRIELLE VORBESCHICHTUNG

Spezialschmierstoffe Wartungsprodukte

35 JAHRE TRIBOLOGISCHE KOMPETENZ

QUALITY - MADE IN GERMANY


Trockenschmierstoffe – die Alternative für besondere Einsatzfälle

Trockenschmierstoffe kommen überall dort zum Einsatz, wo die Verwendung von herkömmlichen Schmierstoffen, wie Fetten, Ölen oder Pasten nicht möglich oder nicht erwünscht ist. Als Hochleistungsschmierstoffe vermeiden sie Oberflächenschäden. Sie gewähren eine zuverlässige und wartungsfreie Dauerschmierung stark belasteter Maschinenelemente. Außerdem ermöglichen sie eine leichte Montage von Schraubverbindungen.

Trockenschmierstoffe lassen sich einteilen in:

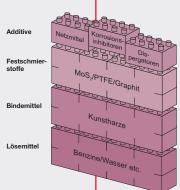
- pulverförmige Festschmierstoffe
- wachsbasierende Gleitfilme
- feststoffhaltige Gleitlacke

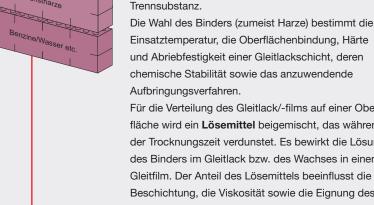
Festschmierstoffe (wie MoS₂, Graphit oder PTFE) sind Substanzen, die durch ihre Struktur und Eigenschaften in der Lage sind, allein oder in Kombination mit anderen Schmierstoffen, Trennfilme zwischen Oberflächen zu bilden.

Gleitlacke sind Suspensionen von Festschmierstoffen sehr kleiner Teilchengrößen, die in einen anorganischen oder organischen Binder eingelagert sind. Gleitfilme dagegen basieren auf Wachse als

Einsatztemperatur, die Oberflächenbindung, Härte und Abriebfestigkeit einer Gleitlackschicht, deren chemische Stabilität sowie das anzuwendende

Für die Verteilung des Gleitlack/-films auf einer Oberfläche wird ein Lösemittel beigemischt, das während der Trocknungszeit verdunstet. Es bewirkt die Lösung des Binders im Gleitlack bzw. des Wachses in einem Gleitfilm. Der Anteil des Lösemittels beeinflusst die Beschichtung, die Viskosität sowie die Eignung des Gleitlacks/-films für bestimmte Applikationsmethoden. Abhängig von der Art des Binders kommen als Lösemittel sowohl aromatische und aliphatische Kohlenwasserstoffe, als auch Wasser zur Anwendung.


Vergleich: Trockenschmierstoffe – klassische Schmierstoffe					
Einsatzgebiet	Gleitlack	Öl, Fett, Paste			
Vakuum	Sehr gut	Fast unmöglich			
Tieftemperatur	ur Gut Ungünstiç abhängig				
Hochtemperatur	Sehr gut	Nicht geeignet wegen Verdampfungsverlusten			
Niedrige Geschwindigkeit	Geringer Einfluss	Schlecht			
Hohe Geschwindigkeit	Begrenzt	Gut, hydrodynamisch			
Brennbarkeit	Keine im ausgehärteten Film	Oft hoch			
Ionisierende Strahlung	Gut verträglich	Schlecht verträglich			
Umweltgefährdung	Sehr gering	Aufwendige Entsorgung			
Verunreinigung	Gering	Kriechvorgänge			
Nachschmierung	Nicht möglich	Möglich			


Festschmierstoff	MoS ₂	Graphit	PTFE
Farbe	Schwarz	Schwarz	Transparent/Weiß
Einsatz Temp. [°C]	-180 bis +450	-35 bis +600	-180 bis +260
Haftung auf Metall	+	_	_
Elektr. Leitfähigkeit		+	
Chemische Stabilität	_	+	+
Vorteile	Hohe LastaufnahmeGeringe ReibzahlVerhindert Stick-Slip	Synergetische Effekte mit MoS ₂	 Antihaft-Eigen- schaften Synergetische Effekte mit MoS₂
Korrosionsschutz- eigenschaften	mäßig	mäßig	gut

Wirkungsweise von Gleitlacken und Gleitfilmen

Gleitlacke verhindern den direkten Kontakt von Materialoberflächen im Mikrobereich mit Rautiefen zwischen 5-10 µm. Das reiche Angebot von Festschmierstoffen in Gleitlacken reduziert außerdem das Risiko für Initialschäden der Materialoberflächen im Tribokontakt. Zusätzlich gewährleisten Gleitlacke bei Maschinenteilen, die unter hoher Belastung nur geringe Geschwindigkeiten erreichen oder oszillierende Bewegungen ausführen, von Bewegungsbeginn an einen funktionsfähigen Trennfilm zwischen den beschichteten Oberflächen.

> Bei der Auswahl eines geeigneten Trockenschmierstoffes für Ihren Einsatzfall unterstützt Sie die beigefügte Produktübersicht.

SPEZIALSCHMIERSTOFFE

FÜR HÖCHSTE ANFORDERUNGEN

Wirkung und Einsatzmöglichkeiten von Gleitlacken und Gleitfilmen

Die Beschichtung mit einem Gleitfilm hingegen zielt auf eine gleichbleibende Reibzahl für die zuverlässige Montage von Schraubverbindungen. Zudem können Gleitlacke/-filme auch als Korrosionsschutz, Anti-Knarz- und Antihaftbeschichtungen eingesetzt werden. Die sorgfältige Auswahl geeigneter Festschmierstoffe, Binder und Additive erlaubt die Entwicklung und Herstellung maßgeschneiderter Gleitlacke/-filme für die unterschiedlichsten industriellen Einsatzfälle. So entwickelt OKS z.B. auch lösemittelarme und wasserverdünnbare Gleitlacke und Gleitfilme um die zunehmenden Forderungen aus dem Umwelt- und Arbeitsschutzbereich zu erfüllen.

Verarbeitung vo	n Gleitlacken	und Gleitfilme	en
veral bellully vu	III Gleitiackeii	und diennin	71 I

OKS Gleitlacke/-filme sind für verschiedenste Werkstoffe wie Metalle, Kunststoffe und Elastomere geeignet. Entscheidend für eine hohe Lebensdauer einer Gleitlack-/Gleitfilmbeschichtung ist die Vorbehandlung der Oberflächen und die Wahl der Applikationstechnik. Bei Beachtung der Vorbehandlungs- und Beschichtungshinweise ist ein OKS-Gleitlack/-film dauerfest.

Die Beschichtung erfolgt nach einer gründlichen Entfettung der Metalloberflächen entweder durch Tauchen, Spritzen oder Streichen. Die trockene, grifffeste Schicht ist zwischen 10 und 20 µm dick. Sie ist gut haftend, widersteht hohen Druckbelastungen, nimmt keine Verschmutzung an und zeichnet sich, abhängig vom Produkt, durch eine hohe chemische Beständigkeit und Temperaturverträglichkeit bis maximal 600°C aus.

Für die Massenbeschichtung von Kleinteilen, wie z.B. Schrauben mit einem Gleitfilm bietet sich der Einsatz von Trommel- und Zentrifugenanlagen bzw. das Tauchverfahren an.

Ver	rarbeitung von Gleitlacken					
	Tauchen und Zentrifugieren	Spritzen	Streichen			
Vorteile	Schnelle und kostengünstige Beschichtung kleiner Teile Geringer Lackverbrauch Keine Emissionen durch geschlossenes System	Gleichmäßige Oberfläche (insbesondere bei automa- tischer Aufbringung) Stärke der Filmschicht über Viskosität und Sprüh- gänge einstellbar	Einfache Handhabung Für Werkstatt und Montage Beschichtung von Kleinstmengen			
Nachteile	Ungleichmäßige Oberflächen Verkleben der Teile Keine partielle Beschichtung Teure Maschinen	Absaugeinrichtung notwendig Materialverlust durch Overspray Aufwendig	■ ungleichmäßige Schicht			

Einsatzbeispiele

Armaturenteile, Befestigungselemente, Dichtungen, Dübel, Federn, Formschlüssige Verbindungen, Gelenklager, Gewindespindeln, Gleitführungen, Gleitlager, Gleitscheiben, Kettenteile, Kipphebel, Lagerbolzen, Metallprofile, Metallumformung, Nieten, Schrauben, Muttern, Schaltnocken, Spannhülsen, Sperrklinken, Spanplattenschrauben, Scharniere, Beschläge, Schlossteile, Wellen, Zahnräder. Gleitlacke werden vermehrt auch im Gebrauchsgüterbereich eingesetzt.

Vorteile einer Gleitlackschmierung (je nach Typ)

- □ Trockene Dauerschmierung ohne Öl und Fett
- Auch nach langer Stillstandzeit voll schmierwirksam
- Extreme Druckbeständigkeit
- Unempfindlich gegen Staub, Schmutz, Feuchtigkeit und chemische Einflüsse
- Ermöglicht sehr geringe Reibwerte mit konstanten Reibungskoeffizienten
- ☐ Hohe Temperaturbelastbarkeit in weitem Temperaturbereich
- ☐ Keine Verdampfungsverluste und ausgezeichnete Haftfestigkeit
- Einsatz im Vakuum möglich
- Chemisch-physikalisch stabil und strahlenbeständig
- Wirksamkeit auch bei geringen Gleitgeschwindigkeiten
- □ Einlaufhilfe für Motoren- und Getriebeteile
- Schafft Notlaufeigenschaften
- Langzeit-Korrosionsschutz
- ☐ Ersatz für umweltgefährdende Beschichtungen
- Hohe Wirtschaftlichkeit

LKW-Achse mit Gleitlackbeschichtung

Für weitere Fragen steht Ihnen unser Technischer Service gerne zur Verfügung.

Über 150 Hochleistungsprodukte aus einer Hand

OKS - Quality made in Germany

Die Marke OKS steht für Hochleistungsprodukte zur Reduzierung von Reibung, Verschleiß und Korrosion. Der seit über 35 Jahren währende Erfolg von OKS ist maßgeblich geprägt durch die hohe Qualität und Zuverlässigkeit unserer Produkte, die von erfahrenen Experten an unserem Hauptsitz in Maisach bei München mit modernen Prüfsystemen und Anlagen entwickelt und produziert werden.

OKS - Ihr professioneller Partner

Unsere hohe tribologische Kompetenz, unser umfassender technischer Service, die reibungslose Verfügbarkeit und unsere innovativen Lösungen für spezifische Schmierstoffanforderungen machen uns zu einem bevorzugten Partner anspruchsvoller Kunden weltweit.

OKS Spezialschmierstoffe GmbH

Ganghoferstraße 47 D-82216 Maisach

Tel. +49 (0) 8142 3051-500 Fax +49 (0) 8142 3051-599

info@oks-germany.com www.oks-germany.com

BERATUNG UND VERTRIEB

Die Angaben in dieser Druckschrift entsprechen dem neuesten Stand der Technik, sowie umfangreichen Prüfungen und Erfahrungen. Bei der Vielfalt der Anwendungsmöglichkeiten und der technischen Gegebenheiten können sie lediglich Hinweise auf Anwendungen geben und sind nicht auf jeden Einzelfall voll übertragbar, daher können daraus keine Verbindlichkeiten, Haftungs- und Gewährleistungsansprüche abgeleitet werden. Eine Haftung für die Eignung unserer Produkte für bestimmte Verwendungen sowie bestimmte Eigenschaften der Produkte übernehmen wir nur, wenn diese Im Einzelfall schriftlich zugesagt worden sind. In jedem Fall berechtigter Gewährleistungsansprüche sind diese auf die Lieferung mangelfreier Ersatzware oder, wenn diese Nachbesserung scheitern sollte, auf die Rückerstattung des Kaufpreises beschränkt. Alle weitergehenden Ansprüche, insbesondere die Haftung für Folgeschäden, sind grundsätzlich ausgeschlössen. Vor Anwendung müssen eigene Versuche durchgeführt werden. Für Schreib-, Tipp-, Rechen- und Übersetzungsfehler wird keine Gewähr übernommen. Anderungen im Interesse des Fortschrifts vorbehalten.

OKS GLEITLACKE

40 4	Produkt	Bezeichnung	Technische Daten	Farbe, Festschmier- stoff	Charakterisierung	Einsatzbeispiele
tend	OKS 500	MoS ₂ -Gleitlack, wärmehärtend	Einsatztemp.: –70 °C bis +250 °C Press-Fit-Test: μ = 0,09, kein Rattern Optimale Schichtdicke: 7 bis 15 μm	• schwarz • MoS ₂ , Graphit	Trockenschmierung bei temporärem Betrieb und langen Stillständen, in staubiger Umgebung bei niedrigen Geschwindigkeiten Einlaufschmierstoff in Kombination mit Öl- oder Fettschmierung Erzeugt Notlaufeigenschaften	Gleitschienen, Gelenke, Gelenklager und ähnli- che Bauteile unter hohen Flächenpressungen und vorbestimmten Gleitwegen
wärmehär nittel	OKS 589	MoS ₂ -PTFE-Gleitlack, warmhärtend	Einsatztemp.: -70 °C bis +250 °C Press-Fit-Test: μ = 0,07, kein Rattern Gewindereibzahl (M10/8.8): μ = 0,08 Optimale Schichtdicke: 10 bis 20 μ m	mattschwarz MoS ₂ , Graphit, PTFE	Trockenschmierung von Gleitflächen bei hohen Belastungen, geringen Geschwindigkeiten und korrosiven Einflüssen Voll wirksam auch nach längeren Stillständen Kein Anhaften von Staub und Verschmutzungen	Erhöhter Verschleißschutz von nicht anders schmier- baren Gleitstellen
Lösem	OKS 510 OKS 511	MoS ₂ -Gleitlack, schnelltrocknend	Einsatztemp.: –180 °C bis +450 °C Press-Fit-Test: μ = 0,07, kein Rattern Optimale Schichtdicke: 10 bis 15 μm	• grau-schwarz • MoS ₂ , Graphit	Trockenschmierung bei temporärem Betrieb oder langen Stillstandszeiten, in staubiger Umgebung und bei niedrigen Gleitgeschwindigkeiten Einlaufschmierstoff in Kombination mit Ölen oder Fetten, erzeugt Notlaufeigenschaften Trocknung bei Raumtemperatur	Lager, Verzahnungen und andere Gleitpaarungen bei oszillierenden Bewegungen Beschichtung von Stanz- werkzeugen
	OKS 570 OKS 571	PTFE-Gleitlack	Einsatztemp.: -180 °C bis +260 °C Press-Fit-Test: μ = 0,07 Gewindereibzahl (M10/8.8): μ = 0,10 Optimale Schichtdicke: 5 bis 20 μ m	weißlich PTFE	Trockenschmierung von Gleitflächen unterschiedlicher Materialien bei geringen Drücken, niedrigen Geschwindigkeiten und in staubiger Umgebung Farbloser, nichtschmutzender Gleit- und Trennfilm Verhindert Tribokorrosion Trocknung bei Raumtemperatur	Verpackungsmaschinen Gleitbereiche i. d. Kunststoff- und Textilindustrie Antihaftbeschichtung von Dichtungen oder Dichtflächen aller Art
lufttrocknend	OKS 530	MoS ₂ -Gleitlack, Wasserbasis, lufttrocknend	Einsatztemp.: –35 °C bis +450 °C Press-Fit-Test: μ = 0,10, kein Rattern Gewindereibzahl (M10/8.8): μ = 0,05	• schwarz • MoS ₂ , Graphit	 Kann auf heiße Oberflächen aufgesprüht werden Einsatz in weitem Temperaturbereich Trocknung bei Raumtemperatur Verbrauchter Gleitfilm kann nachgebessert werden Verdünnbar mit Wasser bis 1:5 	Schmierung hoch belasteter Ketten, wenn eine Öl- oder Fettschmierung nicht mehr möglich ist
Wasser	OKS 536	Graphit-Gleitlack, Wasserbasis, lufttrocknend	Einsatztemp.: -35 °C bis +600 °C Press-Fit-Test: μ = 0,12, kein Rattern	• schwarz • Graphit	 für hochbelastete Ketten in Temperaturbereichen wo Öl oder Fettschmierung nicht möglich ist, Kann auf heiße Oberflächen aufgesprüht werden Trocknung bei Raumtemperatur Verbrauchter Gleitfilm kann je nach Anwendung nachgebessert werden Verdünnbar mit Wasser bis 1:5 	z. B. Glüh-, Einbrenn- und Backöfen bei der Alutuben- herstellung, in Lackieranlagen oder in Backstraßen
	OKS 575	PTFE-Wasser-Gleitlack	Einsatztemp.: –180 °C bis +150 °C/+250 °C Optimale Schichtdicke: 5 bis 10 μm	weißlich PTFE	Für Gleitflächen aus unterschiedlichen Materialien, bei geringen Drücken, niedrigen Geschwindigkeiten und in staubiger Umgebung Trocknung bei Raumtemperatur Verdünnbar mit Wasser Verhindert Tribokorrosion	Verpackungsmaschinen Rollen und Rutschen in Transportbereichen Antihaftbeschichtung Trennfilm bei Gießharzanwendungen.

OKS GLEITFILME UND FESTSCHMIERSTOFFE

Seite 2 von 2

40	THE SE	Produkt	Bezeichnung	Technische Daten	Farbe, Festschmier- stoff	Charakterisierung	Einsatzbeispiele
	#	0KS 1300 0KS 1301	Gleitfilm, farblos	Einsatztemp.: -60 °C bis +100 °C Gewindereibzahl (M10/8.8): μ = 0,08 - 0,10	• farblos	Gewindebeschichtung Gleitfilm für Kunststoff, Holz und Metall Durch UV-Indikator nachweisbar Verhindert Fressen Für alle Schraubenwerkstoffe Vielseitiger Einsatz, insbesondere zur Vorbeschichtung von Klein- und Massenteilen	Zur Montage von Gleitring- dichtungen oder Trocken- schmierung in textil- oder papierverarbeitenden Maschinen
lufttrocknend	0)KS 1710	Gleitfilm für Schrau- ben, Konzentrat auf Wasserbasis	Einsatztemp.: > +60 °C Gewindereibzahl (M10/8.8): μ = 0,08 – 0,14 (je nach Konzentration und Oberfläche)	milchig-weiss	Gewindebeschichtung, für kontrollierte Montage Trockener und grifffester Gleitfilm Durch UV-Indikator nachweisbar Verdünnbar mit Wasser bis max. 1:5 Kontrollierte Reibwerte Wirtschaftliche Vorbeschichtung	Beschichtung von Schrau- ben mit galvanisierten Oberflächen und VA- und Al-Gewinden
	Wasse	OKS 1750	Gleitfilm für Holz- schrauben, Konzentrat auf Wasserbasis	Einsatztemp.: > +70 °C Gewindereibzahl (M10/8.8): μ = 0,08 – 0,14 (je nach Konzentration und Oberfläche)	gelblich	Trockener und grifffester Film Durch UV-Indikator nachweisbar Verdünnbar mit Wasser bis max. 1:5 Kontrollierte Reibwerte	Beschichtung von Gewinden mit galvanisierten Ober- flächen, z.B. Spanplatten- schrauben
	O	OKS 1765	Gleitfilm für gewinde- formende Schrauben, Konzentrat auf Was- serbasis	Einsatztemp.: > +70 °C Gewindereibzahl (M10/8.8): μ = 0,06 – 0,15 (je nach Konzentration)	• milchig-weiß	Trockener und grifffester Film Durch UV-Indikator nachweisbar Kein Kaltverschweißen Verdünnbar mit Wasser bis max. 1:5 Kontrollierte Reibwerte	Beschichtung gewindefor- mender Schrauben aus Alu- Legierungen, hochlegierten, galvanisierten und austeniti- schen Stählen
	0)KS 100	MoS ₂ -Pulver, hochgradig rein	Einsatztemp.: –185 °C bis +450 °C (bis +1.100 °C im Vakuum, bis +1.300 °C in Schutzgas) Teilchengröße: 4,0 – 15,0 μm, max. 48,0 μm	• grau-schwarz • MoS ₂	Zur Verbesserung der Gleiteigenschaften von Maschinenteilen Einlaufschmierstoff in Kombination mit Öl oder Fettschmierung Schwierige Umformvorgänge in der Metallverarbeitung Zum Einarbeiten in Kunststoffe, Dichtungen und Packungen	Geräte und Präzisionsmechanismen, z.B. im Vakuum oder bei radioaktiver Strahlung Werkstücke in der Kalt- und Warmumformung.
	-	0KS 110 0KS 111*	MoS ₂ -Pulver, mikrofein	Einsatztemp.: –185 °C bis +450 °C (bis +1.100 °C im Vakuum, bis +1.300 °C in Schutzgas) Teilchengröße: 2,5 – 5,0 μm, max. 15,0 μm	• grau-schwarz • MoS ₂ • Wachs (*nur Spray)	 Einlaufschmierstoff in Kombination mit Ölen oder Fetten Vermindert Reibung und Verschleiß, auch bei hohen Drücken Gute Haftung auch bei feinst bearbeiteten Oberflächen Für schwierige Umformvorgänge Zum Einpressen von Lagern 	Maschinenteile, Geräte und Präzisionsteile Zum Einarbeiten in Sinter- metalle, Kunststoffe, Dichtungen, Packungen,